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Abstract Given that a desired robot action is obtained by en-

abling an appropriate set of processes, there is still

This paper describes an extension to the RAP the problem of telling when a particular goal has been
_system task-net semantics and representation attained or when a situation has arisen that prevents

language to enable the effective control of that goal from being attained. Often the processes
continuous processes. The representation ad- themselves can detect important states of the world,

0 _dresses the problems of synchronizing plan particularly those in which the process is not func-
__ expansion with events in the world, coping tioning properly. It will also often be necessary to use
___•_ with multiple, non-deterministic task out- processes to detect transient conditions reliably. We
"---- comes, and the description of a simple form assume that when processes detect various conditions,

of clean-up task. either good or bad, they will generate asynchronous
It is also pointed out that success and fail- signals. Depending on the programming model used.

S Iture need no special place in a task network signals might be generated by processes directly. they
urepnesedntaion. Spcia ces ind faie task netr might correspond to particular values appearing on
representation. Success and failure are re- wires connecting behaviors, or they might occur when
knowledge and do not explicitly define that a particular process is invoked. In all cases, however.
knstem'slowl ad dontrotxl y signals will be fairly low-level raessages from some pro-

cess that does not always know the goals it will be used
to achieve.

To Appear in the Second International Conference on Al
Planning Systems, June 1994. 1.1 The Animate Agent Architecture

1 Introduction The Animate Agent Architecture attempts to inte-
grate these ideas using the interface between reactive

Recently, Al researchers have proposed several dif- execution and continuous control illustrated in Fig-
ferentl Aehanismseaoprcersham g probotse reatveraly d ure 1. The RAP system takes tasks and refines thei,
ferent mechanisms for programming robots reactively, into commands to enable appropriate sensing and ac-
These include collections of behaviors [2d, schemas [1], tion processes for the situation encountered at rim
routin tes [9], oalexs [15]. Many details differ be- time. Typically, processes will be enabled in sets that
tween these proposals, particularly in the area of philo- correspond to the notion of discrete "primitive '-.tps"
sophical commitment, but they share the common idea that will reliably carry out an action in the world ,ver
that the actual behavior of the robot at any given mo- some period of time. Slack has dubbed such collec-
ment is the result of a set of interacting processes act- tions of processes "reactive skills" [17]. The RAP ''-

ing on input from the environment. Thus, the behav- tern produces goal-directed behavior using this i,' ,% S-

ior of the robot (i.e., its apparent immediate goal) can refining abstract plan steps into a sequence of diffsr.,,t

be changed by changing the set of active processes. configurations for a process-based control syst,,m

This idea has been discussed by several authors and it
allows some aspects of robot control to be described
in terms of concurrent processes while other aspects 1.2 Controlling Processes with the RAP
are described in terms of discrete, symbolic steps that System
enable and disable those processes [5, 17, 8, 7, 14]. Once a set of processes has been started up. O 1

0) -This work was supported in part by ONR contract system relies on signals to tell it when the d,,sir,'l ac-
N00014-93-1-0332 and ARPA contract N00014-93-1-1194. tivity is complete and how it came out. Sil,', 1h,-
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Tasks different situation. For the purposes of this paper, the
important aspects of a RAP task description are the
SUCCEED and METHOD sections.

dRAP Executor For example, the following RAP describes how to pick
lLibrary something up in the simulated delivery world used in

initial RAP system development [4, 6]:
sResults (define-rap (arm-pickup ?arm ?thing)

(succeed (ARM-HOLDING ?arm ?thing))
Active Sensing Behavior Control (method

ProcssesProcsses(context (not (TOOL-NEEDED ?thing ?tool true)))
(task-net

(tl (arm-move-to ?arm ?thing) (for t2))
(t2 (arm-grasp-thing ?arm ?thing))))

World (method
(context (TOOL-NEEDED ?thing ?tool true))

Figure 1: The Animate Agent Architecture (task-net
(tl (arm-pickup ?arm ?tool) (for t2))
(t2 (arm-move-to ?arm ?thing) (for t3))

reason for invoking a set of processes is not known to (t3 (arm-grasp-thing ?arm ?thing)))))
the processes themselves, the RAP system must inter- This RAP has two methods for achieving the goal.
pret signals in context. The same signals might mean The SUCCEED clause is a predicate checked against
different things in different plans. For example, a pro- memory to see if the overall task is complete. Each
cess for approaching a given target might be used to METHOD specifies a plan, or TASK-NET, for achieving
move up to a fixed object in the world or it might be the SUCCEED condition in a given CONTEXT. Like the

used to follow a moving target around. A signal say- SUCCEED clause, each CONTEXT is a predicate to be

ing that the target has been reached means the task is checked in memory. This paper is about writing TASK-

complete when approaching but it means the object is cekdi eoy hsppri bu rtn AK
completse when apfoahing. bNETs that link subtasks, process invocations, and sig-
too close when following. nal interpretation into a coherent plans.

Thus, a RAP task description must: The RAP system [3, 4] carries out tasks using the foi-

l. Allow concurrent threads of execution so that lowing algorithm. First, a task is selected for execution
control processes can be started up to- and if it represents a primitive action, it is executed di-multiple rectly, otherwise its corresponding RAP is looked up in

gether, the library. Next, that RAP'S check for success is iised

2. Represent when to proceed to the next subtask in as a query to the situation description and, if satisfied.
a method given that the task must wait for certain the task is considered complete and the next task can
signals to do so. be run. However, if the task has not yet been sat-

3. Describe methods for a task that allow different isfied, its method-applicability tests are checked and

next steps when different signals are received, one of the methods with a satisfied test is selected.
Finally, the subtasks of the chosen method are ,Iietied

This paper discusses these issues and presents a new for execution in place of the task being executed. and
task method representation language for the RAP sys- that task is suspended until the chosen method is coin-
tem. plete. When all subtasks in the method have been ex-

ecuted, the task is reactivated and its completion test
is checked again. If all went well the completion cot-2 The RAP System dition will now be satisfied and execution can procel ,
to the next task. If not, method selection is repeated4 -

The RAP system is designed for the reactive execution and another method is attempted.
of symbolic plans. A plan is assumed to include goals,
or tasks, at a variety of different levels of abstraction 3 Task/Goal Semantics
and the RAP system attempts to carry out each task .......
in turn using different methods in different situations An important aspect of representing and execIiiit a -
and dealing with common problems and simple inter- plan is the meaning of a subgoal or subtask. I le
ruptions. RAP system was originally written assuming that it.,

In the RAP system a task is described by a RAP which method subtasks can be treated as atomic. Fri, ti i --
is effectively a context sensitive program for carrying point of view of the method using a subtask. it will Jes
out the task. The RAP can also be thought of as (le- either succeed or fail, and it will not complet,. ,ii tir
scribing a variety of plans for achieving the task in that success or failure is known.

4 f-i



Fail ceeding to the next subtask in a method (this idea
is closely related to McDermott's notion of blocking a
task thread while waiting for a fluent [12]). For exam-

Approach T ge Succeed pie, a method to approach a fixed target might look
like that shown in Figure 3.

(task-net
(ti (approach-target ?target))) Fail (Terminate)

Stuck
Figure 2: A Symbolic, Discrete Task j I ý At Target

Approach Target Succeed
(Proceed)

For example, the task network shown in Figure 2 con-
tains one subtask and once that subtask is spawned by (task-net
the interpreter, further processing of the method will (tI (approach-target ?target)
stop until the subtask completes. It is assumed that (wait-for (at-target) :proceed)
the subtask will either succeed, in which case the in- (wait-for (stuck) :terminate)))

terpreter should continue processing the task network
after the task (from the black dot in the figure) or it Figure 3: Waiting for A Signal to Proceed
will fail, in which case the method as a whole should
fail and all of its subtasks should be terminated (in This method executes the subtask approach-target
this example there aren't any). and then waits for either an (at-target) signal or a
This representation and semantics for a subtask (or (stuck) signal. If the (at-target) signal is receivedThisrepesetatin ad smantcs or subask(or first, then this subtask succeeds and if (stuck) ar-
method, or plan), assum es that it is appropriate to ex- rivesftrst this subtask fail s and if su ck ) i rh

ecute the next step in a method as soon as a subtask rives first, this subtask fails and other subtasks in the

completes. This assumption is pervasive in the liter- method are terminated.

ature and it makes perfect sense when subtasks are The diagram shows WAIT-FOR clauses as gating ,on-
truly atomic. In fact, one of the motivating ideas be- ditions for letting the interpreter proceed with ex,,i.tt-
hind the RAP system is to try and make this property ing the method. The black dots correspond to lhe
hold by working on each task until it is known to have more traditional interpretation of when the sulht a.k
succeeded. has completed.

This semantics also embodies another, more subtle
assumption. It assumes that a subtask actually has 4 Concurrent Tasks
a well-defined finish and will know when it has suc-
ceeded or failed. This assumption also makes sense The RAP task net representation has always supprt,.,
when actions are atomic. In fact, this assumption is non-linear methods with parallel threads of exectiti,,M.
what makes actions primitive or atomic. This ability to support concurrent tasks is critiral

when the RAP system is being used to enable and it.,-
3.1 Continuous Tasks and Signals able processes in concurrent sets. For example. .,n-

sider the method shown in Figure 4.
Unfortunately, given the low-level robot control sys- Both of the primitive processes approach-target 311d
tem used in the Animate Agent Architecture, neither track-target must be active to get the robot to \i-
of these assumptions holds. Goals are achieved by ally servo to a selected fixed object. The task w-. ,I, -,
sets of processes that must be enabled independently not order these tasks and the interpreter follow. t:%,)
and detecting goal completion depends on the appro- threads of execution. Choosing one thread to f,,1,w
priate interpretation of signals from those processes. first, the interpreter starts the indicated proce..- mtld
Thus, RAP methods must explicitly define which sig- then blocks that thread until receipt of one of thi. mh-
nals mean a subtask has succeeded and which signals cated signals. While that thread is blocked. tihe :tir-
mean it has failed. preter follows the other thread, enabling the ot h,.r ir-

When robot activity is controlled by enabling and dis- cess and blocking that thread while waiting for, ,tv .
abling sets of processes, time must pass while the ac- its signals. The until-end annotation in the t;L-k it
tivity is underway. If the RAP system does the enabling tells the interpreter that subtask t2 should h. ?, ri,-
and disabling explicitly, methods must have a way to nated whenever subtask ti completes. The onl1 ,
let time pass and synchronize further task expansion this method can complete successfully is to re,.i%. ,i,.
with process progress. (at-target) signal from process approach-target

We have adopted a task net annotation that tells the 1 Don't worry about the arguments to approach-t it gvt
interpreter to WAIT-FOR a given signal before pro- and track-target. In reality processes like fi.-.-,T.-



I

Fail (Terminate) However, grouping the initiating of a process and its
termination signals (both good and bad) into a logical

Stuck At Target unit using WAIT-FOR clauses is too limiting- In fact,
Approach Target i Succeed the whole idea of success and failure is too limiting.

Approah TarePrSuceed)
5.1 The Problem of Cleanup Tasks

Track Target Consider the problem of local cleanup tasks. When
an activity requires enabling a variety of processes

Lost Target and then waiting for some event in the world. forc-
Camera Problem ing the method defining the activity to either succeed

or fail on the event makes it very difficult to encode
steps in the method to "clean up" the situation when

(task-net a failure occurs. For example, let's assume that the
(ti (approach-target ?target) track-target process used previously requires that

(wait-for (at-target) :proceed) the robot's camera be turned on first. It is a sini-
(wait-for (stuck) :'ý.rminate)) pie matter to include a task that comes before the

(t2 (track-target ?target) track-target task to turn the camera on. but where
(wait-for (lost-target) :terminate) should the corresponding task to turn the camera off
(wait-for (camera-problem) :terminate) go? Placing it after receipt of the (at-target) sig-
(until-end ti))) nal makes sense if everything works out. However. if

the target is lost and the (lost-target) signal is re-
Figure 4: A Simple Concurrent Task Net ceived, the method will fail and terminate before ever

reaching the task to turn the camera off.

The critical step in concurrent RAP task processing Forcing the interpretation of signals as success and
when primitive actions start processes rather than failure prevents coding methods that include actions
achieve goals is not getting concurrent task expansion to be taken regardless of what happens. In th.e Itxl'
to work, but rather, stopping expansion in the right system, and most other planning systems in the liter-
places to synchronize further processing with the ac- ature, when a subtask fails, all other subta.sks in the'

tual progress of the task in the real world. This syn- same method are assumed no longer valid and termi-

chronization is achieved using WAIT-FOR clauses. nated.

The ability of a plan representation formalism to ex- The problem of cleanup tasks is well known in t it, li -
plicitly allow both concurrency and synchronizing ex- erature [8, 11] and the natural inclination is it) .tart

ecution with events in the world is crucial if the plans trying to represent explicit cleanup or failure recoev,'ry
are to be used to control a real-time system made up plans. However, a closer look at the problem 'h.ows
of composable, concurrent processes. that the whole idea of success, failure, and re,,'ovrv

is a red-herring. The real problem is that tasks have
multiple outcomes. The track-target task ,Ioei't

5 Success and Failure: Red Herrings succeed or fail, it might continue to track, it might I-,-,
the target, it might suggest a better tracking inet lh tdl.

Another deeply ingrained assumption in task repre- the camera might fail, or a whole host of other I v, "-
sentation is that a given task will have only two out- bilities. Each of these outcomes may require a , riff--r,'tt

comes: success or failure. The original RAP system interpretation and a different course of action.'
again tried to enforce this assumption by giving each
task a SUCCESS clause that must be satisfied before it 5.2 Non-Deterministic Task Networks
stops trying various methods to achieve its goal. How-
ever, as has already been illustrated in Section 3.1. it What we really need is a task net representation that
isn't very meaningful to say that a task to enable a explicitly recognizes when subtasks have multiple .. -it-
control process succeeds. Such tasks will invariably comes and allows a different thread to be follow, ,I 6 -r
succeed by starting the process in motion. What mat- each one. Given such a representation, siicor e i"'
ters are the signals that are generated by the process
while it is running. Some signals will mean success and 2This mechanism only accounts for a very siml I i,
some will mean failure. Hence, WAIT-FOR annotations of cleanup task. The problem of cleaning up a .it..lI',n
include the appropriate outcome to use for the task as before dealing with an interruption is much mo lt. 1it, ,lh
a whole when the signal is received. One approach is to use POLICY and PROTECTION I rwv.' r- ,I

tasks as suggested by McDermott [12] but the gfn, r.ai pr,,I,-
know how to exchange target information in real time he- lem requires making complex tradeoffs between ,iir... I
low the level of the RAP system. action at runtime.



Stuck -method. Of course, it is possible to use :fail as a
At Target signal to be caught from the subtask so that if it ex-

plicitly fails, control can be passed to an appropriate
Approach followup subtask. By default, all subtasks are assumed

Tto have an implicit (wait-for :aila :terminate)
e annotation unless an explicit WAIT-FOR failure is in-

On Off cluded. This default assumption leaves previous RAP
Track task nets with their original semantics.
Target

Lost Target 6 Related Work
Camera Problem

(task-net The Reactive Plan Language proposed by Mcdermott
(to (camera-on) (wait-for :success tI) (for t2)) is particularly relevant to the issues addressed in this
(ti (approach-target ?target) paper [11]. The RPL system includes mechanisms for

(wait-for (at-target) t3) making tasks wait until particular signals arrive and
(wait-for (stuck) t3) for multiple threads of plan execution. A goal of that
(until-start t3)) work is to define a language and interpreter that al-

(t2 (track-target ?target) lows plans for arbitrary processes so that the same
(wait-for (lost-target) t3) language used to describe tasks and plans can be used
(wait-for (camera-problem) :terminate) to describe low-level feedback loops as well.
(until-start t3))

(t3 (camera-off))) With the addition of signals and multiple outcomes,
the similarity between RAP task networks and fi-

Figure 5: A Complex Task Net nite state automata becomes more compelling. RAP
task networks don't explicitly describe finite state au-
tomata because tasks don't correspond directly to

failure are possible outcomes, like signals, that can be states of execution but the similarity suggests con-
used to change the flow of control. Success and failure nections to control theory and work that attempts to
in themselves mean nothing. bridge the gap between AI and control theory. In par-

ticular, subsumption based robots use behaviors de-
This idea is incorporated into RAP task nets using scribed by finite state automata [2] and the CIRCA
the WAIT-FOR clause introduced above. As already system reasons about plans as finite state automata
hinted at in the examples, the third argument can be to construct provably safe control loops [13].
:proceed or :terminate or the tag of the next task to
execute when the signal occurs. Consider the method Discrete event system theory is directed toward build-
defined by the task net shown in Figure 5. ing and understanding control plans for systems that

can be described as finite state automata [16]. These
In this method, each WAIT-FOR clause points to the ideas have been used to build simple control systems
next subtask to execute upon receipt of the appro- for vision-based robot navigation problems [10]. 'ie
priate signal. Notice that :success is treated as a Animate Agent project uses an underlying control sys-
signal instead of a result. The RAP system also uses tem that can be reconfigured into different states.
the FOR clause to specify the next step in a plan and RAP task networks are plans for sequencing those
which, given the semantics of success as a signal, is re- states in response to changing goals and events. Thus.
ally just a short form for (wait-for :success task). in some sense, RAP task networks are control plans for
The UNTIL-START annotation is similar to UNTIL-END, a discrete event system. Currently, RAP task networks
specifying that both task ti and t2 should terminate are intended to cover a broad range of behavior hut
when task t3 starts. Thus, if either ti or t2 completes do not attempt to guarantee controllability or stability
and passes control to t3, the other will stop. 3  over all task goals. We will be exploring tighter con-

It is also important to note that there is no longer nections between the RAP system and discrete event
any notion of failure. Should the (camera-problem) control theory in the future.
signal be received while task t2 is active, the method
as a whole is terminated; terminating all of its active 7 Conclusions
subtasks. The previous semantics given to task failure
is subsumed by an explicit directive to terminate the The symbolic planning notion of primitive. atomic ar-

'Don't worry about the fact that not turning tions cannot readily be used to control the enabling
off the camera but terminating the method on a and disabling of processes that must act together ,,\,.r
(camera-problem) signal makes no sense. This example time to achieve goals in the world. When primi~t i' ;w-
is intended simply to illustrate the ideas. tions start processes in motion and the same pr,.-''



can be used in different combinations to achieve differ- system and not about the execution result of a task.
ent goals, the planning system can no longer assume
that primitive actions will have their own well-defined
end points. Acknowledgements
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effective control of such continuous processes. In par-
ticular:
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